Mark scheme – Basic Concept of Organic Chemistry

Question		on	Answer/Indicative content	Marks	Guidance
					ALLOW correct structural OR displayed OR skeletal formulae OR mixture of the above (as long as unambiguous) IGNORE molecular formula ALLOW CH ₃ -
			н₃с, н		ALLOW 1 mark for G AND H combined is structures are correct but in wrong boxes
			$H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{H} F$	3	Examiner's Comments
1		i			Part (i) discriminated extremely well and rewarded the well-prepared candidate. Compound F proved to be the most difficult option, with a large variety of responses, many appearing to be guesses. Candidates were much more successful with compounds G and H , although these were sometimes shown in reverse order. A significant number of candidates drew structures containing C=C or C=O bonds in which the carbon atom had five bonds. Candidates should check drawing of organic structures carefully to ensure that all carbon atoms have four bonds. There were some good responses for part (ii), with many clearly shown and correct systematic names.
			2-methylpropan−1−ol √		IGNORE absence of hyphen or use of dots or commas as separators
		ii	Both numbers required	1	DO NOT ALLOW2-methylprop-1-olOR2-methpropan-1-olOR2-methypropan-1-ol
			Total	4	
2	а		Structural isomers: 1 mark Different structural formulae AND same molecular formula √	5	For 'structural': ALLOW different structure OR different displayed/ skeletal formula DO NOT ALLOW any reference to spatial/space/3D

		Same formula is not sufficient (no 'molecular')
	Common molecular formula: 1 mark	Different arrangement of atoms is not sufficient (no 'structure'/'structural')
	C₅H₁₂ for all 3 hydrocarbons √	ALLOW 5 carbons and 12 hydrogens ALLOW for 2 marks: Different structural formulae AND same molecular formula √ of C ₅ H ₁₂
		✓ Comparisons needed throughout ORA throughout
		 ALLOW comparison between any alcohols, e.g. A is least branched and has highest b pt C is most branched and has lowest b pt
	Boiling point and branching: 1 mark	ALLOW induced dipole(-dipole) interactions IGNORE van der Waals'/vdw forces ALLOW SA for surface area
	Boiling point decreases with more branching	ALLOW 'harder to overcome intermolecular forces ALLOW more energy to separate the molecules
	OR more metnyl/aikyl groups/side chains OR shorter carbon chain √	IGNORE just 'bonds' intermolecular/London forces required
	Branching and London forces: 1 mark	Examiner's Comments
	<i>Could be seen anywhere within response</i> More branching gives less (surface) contact	This question discriminated well and resulted in a full range of marks. Most candidates were aware that structural isomers have different structural formulae
	AND fewer/weaker London forces √	but the same molecular formulae. It was common though for candidates to refer to different arrangements of atoms in space, clearly confusing with stereoisomerism. The
	Energy and intermolecular 1 mark forces:	best candidates used the structures (as in the question) to show that the common molecular formula was C5H12. Candidates were expected to link the amount of surface contact between molecules with induced
	Less energy to break London forces/ intermolecular forces/intermolecular bonds/ √	dipole-dipole forces or London forces. 'Contact' or the name of the intermolecular forces was often omitted. Finally, candidates were expected to link the amount of branching to the strength of the intermolecular forces and the energy

				needed to change state. Lower ability candidates often let themselves down by being unable to construct a well-reasoned response. There was often a gulf between the clear responses of able candidates and those of lower ability candidates.
				ALLOW Free radical substitution
b	1	Radical substitution V	1	Examiner's Comments Most candidates identified this reaction as radical substitution.
	ii	A B 3 √ 2 √	2	Examiner's Comments Most candidates achieved at least one mark, particularly for isomer A . Successful candidates often drew structures of the isomers alongside the table to help with their response.
	iii	Structure of a trichloro isomer of A, e.g. $if (t) = \int_{C} $	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE molecular formula ALLOW multiples, e.g. $2C_5H_{12} + 6Cl_2 \rightarrow 2C_5H_9Cl_3 + 6HCl$ Examiner's Comments Many candidates correctly drew the structure of compound D but comparatively few were able to construct a correct equation. For this equation, candidates needed to apply their knowledge and understanding of monosubstitution of alkanes to substitution of three H atoms by three CI atoms. This task proved to be one of the most difficult questions on this paper. The exemplar shows an excellent response. The candidate has drawn a trisubstituted structure that fits the molar mass of 175.5 g mol ⁻¹ and a

					correct equation for its formation. Many attempts at this equation showed H2 as the second product rather than HCI. (ii) The reaction of compound A with excess chlorine forms a compound D, which has a molar mass of 175.5 gmol ⁻¹ . Draw a possible structure for compound D and write the equation for its formation from compound A. Use molecular formulae in the equation. $\int_{1}^{1} \frac{1}{1} \frac{1}{$
			Total	10	
3			Electron pair acceptor (1) I ⁺ (1)	2	
			Total	2	
4			C _n H _{2n} O ₂ OR C _n H _{2n+1} COOH ✓	1	Examiner's Comment: The correct response; $C_nH_{2n}O_2$ or $C_nH_{2n+1}COOH$, was presented by a good proportion of candidates but many incorrect alternatives were seen.
			Total	1	
5	а	i	(series of compounds with the) same functional group OR same / similar chemical properties OR same / similar chemical reactions ✓ each successive / subsequent member differing by CH ₂ ✓	2	 IGNORE reference to physical properties IGNORE same general formula (<i>in question</i>) Differs by CH₂ is not sufficient (<i>no</i> successive) DO NOT ALLOW same empirical OR have the same molecular formula Examiner's Comments Many candidates were able to score both marks by specifying the same functional group and that each successive member varies by a CH₂ group. Some responses were imprecise and referred to just members differing by a CH₂ group.
		ii	CnH _{2n-1} Br ✓	1	ALLOW C n H 2n-1 X ONLY if X is specified as Br (<i>question asks for bromide</i>)

					Examiner's Comments
					The most able candidates were able to determine the general formula required. Many candidates came close and stated C _n H _{2n-1} X, but failed to specify that X was Br.
					ALLOW 1-bromoprop-2-ene
					Examiner's Comments
		iii	3-bromoprop(-1-)ene ✓	1	Candidates were asked to give the systematic name for ally bromide. Although a fair proportion stated 3-bromopropene, 1- bromoprop-2-ene was also a common response. Either of these was allowed by the mark scheme. A common incorrect response was 1-bromoprop-3-ene. Candidates should be aware that the lowest possible locant numbers should be used when naming compounds.
					ALLOW movement of a lone pair OR
					Examiner's Comments
	b	İ	Movement of an electron pair √	1	Although the definition of a curly arrow was well known, many imprecise responses were seen. The most common was that a curly arrow represents the movement of electrons. Candidates should be aware that it is important to refer to an electron pair, when describing the meaning of a curly arrow.
					ALLOW can donate a lone pair
					Examiner's Comments
		ii	Electron pair donor √	1	Most candidates could state the correct definition. However, as with part (i) a significant number of candidates failed to specify 'electron pair' and stated that a nucleophile is an electron donor.
			Total	6	
					ALLOW different structure OR different displayed formula OR different skeletal formula for structure
6	а	i	(compounds or molecules having the) same molecular formula but different structural formulae ✓	1	DO NOT ALLOW any reference to spatial / space
					Same formula is not sufficient (<i>no reference to molecular</i>) Different arrangement of atoms is not

					sufficient (<i>no reference to structure / structural</i>)
					Examiner's Comments
					Most candidates were able to define structural isomers. Some responses were imprecise with candidates stating that isomers had 'different arrangements of atoms' rather than referring to different structural formulae.
					ALLOW trimethylbutane as the ONLY alternative response
					Examiner's Comments
		ii	2, 2, 3-trimethylbutane ✓	1	Many candidates found this question difficult and it was common to see incorrect names for compound A . These included incorrect use of locant numbers e.g. 2,3,3- trimethylbutane and inappropriate nomenclature e.g. 2,2-dimethyl-3- methylbutane. A small proportion of candidates named compound A as heptane.
					DO NOT ALLOW molecular formulae OR structural formula OR displayed formula OR mixture of the above
	b			1	Examiner's Comments
					The majority of candidates were able to provide the skeletal formula of pentane.
			Total	3	
					ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above
					DO NOT ALLOW molecular formula
			CH. CH.		ALLOW dichloro or diiodo compound instead of the dibromo compound as the only alternatives.
7	а		 н₃ссн	1	Examiner's Comments
	5		 Br Br √		This question required candidates to interpret the reaction scheme and suggest an intermediate compound that could be formed from 2-methylbut-2-ene that could be also hydrolysed to give the diol shown. The most able candidates demonstrated their understanding of this scheme and often suggested the correct dihalo compound. Most candidate favoured the dibromo

				compound however some chose to show the dichloro or diiodo compound. All of these responses received credit.
				A large proportion of structures suggested were obtainable from 2-methylbut-2-ene but could not be hydrolysed. These included the products of hydrogenation e.g. 2- methylbutane, or hydration e.g. 2- methylbutan-2-ol.
				Consequently only the most able candidates achieved a mark in part (b), as this was essentially dependant on part (a).
				ALLOW C/2 if dichloro compound drawn ALLOW I2 if diiodo compound drawn
				IGNORE state symbols Answer must match box from (a) to score
				Examiner's Comments
Ь		Reagent A : correct halogen√ e.g. Br ₂ / bromine	1	This question required candidates to interpret the reaction scheme and suggest an intermediate compound that could be formed from 2-methylbut-2-ene that could be also hydrolysed to give the diol shown. The most able candidates demonstrated their understanding of this scheme and often suggested the correct dihalo compound. Most candidate favoured the dibromo compound however some chose to show the dichloro or diiodo compound. All of these responses received credit.
				A large proportion of structures suggested were obtainable from 2-methylbut-2-ene but could not be hydrolysed. These included the products of hydrogenation e.g. 2- methylbutane, or hydration e.g. 2- methylbutan-2-ol.
				Consequently only the most able candidates achieved a mark in part (b), as this was essentially dependant on part (a).
с	i	Steam AND acid catalyst √	1	ALLOW H ⁺ / named acid / H ₂ SO ₄ / H ₃ PO ₄ ALLOW H ₂ O(g) ALLOW water only if a temperature of 100 °C or above is quoted. IGNORE any temperature given with steam IGNORE pressure Examiner's Comments

				One would expect the majority of candidates to do well in a question which required them to state the reagents and conditions required for the hydration of alkenes; however this was not the case. The most able candidates provided accurate responses which referred to both steam and the acid catalyst, which was often shown to be H ₃ PO ₄ .
				Other candidates stated only one of the two required responses and it was common to see the acid catalyst stated alongside a temperature and pressure but with no reference to steam. Some candidates stated the reagent as H ₂ O instead of steam and this was allowed if accompanied by a temperature of over 100 °C.
				Candidates should be encouraged to learn reagents and conditions required for organic reactions.
				ALLOW different structure OR different displayed formula OR different skeletal formula for structure
	ii	(compounds or molecules) having the same molecular formula but different structural formulae ✓	1	Same formula is not sufficient Different arrangement of atoms is not sufficient
				Examiner's Comments
				The majority of candidates were able to explain the term structural isomers.
				ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW any vertical bond to OH DO NOT ALLOW OH-
				Examiner's Comments
	iii	СH ₃ CH ₃ СH ₃ CH ₃ H ₃ C—С—С—Н H ₃ C—С—С—Н ОН Н , Н ОН ,	2	Many candidates found this question difficult and a large number of candidates showed structures of alcohols with the molecular formula $C_5H_{12}O$, but that could not be formed from 2- methylbut-2-ene. Examples of these incorrect responses included 2-methylbutan- 1-ol, pentan-1- ol, pentan-2-ol and pentan-3- ol. Only the most able could show the structures of both alcohols produced by the hydration of 2-methlybut-2-ene.
				Candidates should be reminded to check

					that any structures they suggest are consistent with the context of the question.
		iv	Does not contain OH group(s) OR does not contain hydroxyl group(s) OR is not an alcohol ✓ Does not form hydrogen bonds with water ✓	2	 ALLOW ORA throughout DO NOT ALLOW OH⁻ (ions) / hydroxide (ions) 'Does not form hydrogen bonds' is not sufficient Examiner's Comments The majority of candidates were able to recognise that the key to the solubility of the isomers in water is that they contain the OH group whereas 2-methylbut-2-ene does not. Most candidates scored the second mark by accurately explaining that the OH group could form hydrogen bonds with water.
			Total	8	
8	а	i	(series of compounds with the) same functional group OR same / similar chemical properties OR same / similar chemical reactions ✓ each successive/subsequent member differing by CH ₂ ✓	2	IGNORE references to physical properties IGNORE has same general formula (in question) DO NOT ALLOW have the same empirical formula OR have the same molecular formula Examiner's Comments Many candidates were able to score both marks by specifying the same functional group and that each successive member varies by a CH ₂ group. Some responses were imprecise and referred to just members differing by CH ₂ group.
		ii	CnH2n ✔	1	Examiner's Comments Most candidates were able to state the general formula for the cycloalkanes.
		111	More carbons (in ring) OR more (surface area of) contact AND more van der Waals forces	2	Both answers need to be comparisons ALLOW ORA throughout ALLOW has more electrons OR larger (carbon) ring OR higher molecular mass IGNORE bigger molecule IGNORE chain instead of ring DO NOT ALLOW 'more contact between atoms' ALLOW 'VDW' for van der Waals

		OR stronger van der Waals forces √		'More intermolecular forces' is not sufficient
		More energy needed to break the intermolecular forces ✔		ALLOW it is harder to overcome the intermolecular forces ALLOW intermolecular bonds / van der Waals bonds ALLOW more energy is needed to separate molecules IGNORE more energy is needed to break bonds
				Examiner's Comments This was a well answered question and many candidates could relate the difference in boiling point to the increase in points of contact and stronger van derWaals' forces. A significant number of candidates referred to the breaking of bonds rather than intermolecular forces.
b	i	(Compounds with the) same structural formula but a different arrangement (of atoms) in space ✓	1	 ALLOW different spatial arrangement of atoms. DO NOT ALLOW different displayed formula. Examiner's Comments Although many candidates were able to provide the correct definition, some responses did not state that stereoisomers have the same structural formula.
	ii	$H_{3C} = C + H_{3C} + C = C + H_{3C} + H_{3C} + C + C + H_{3C} + H_{3C} + C + H_{3C} + C + H_{3C} + H_{3C} + H_{3C} + H_{3C} + H_{3C} + H_{3C} + H$	2	ALLOW displayed OR skeletal formula OR mixture of the above.ALLOW structures in either order IGNORE molecular formula IGNORE structural formula IGNORE names IGNORE E/Z and cis / trans labelsALLOW 1 mark for a pair of E/Z isomers of an incorrect hydrocarbon structure with four C atoms e.g. C, or CH or CH2 instead of CH3 groups.Examiner's CommentsThis question required candidates to identify isomers of cyclobutane that would exhibit stereoisomerism and proved challenging for some. The more able candidates suggested

					cyclic alkenes, which were not isomers of cyclobutane.
			Total	8	
			Aliphatic = E, H, I, J (1)		
9	а		Alicyclic = E, H, J (1)	3	
			Aromatic = F, G (1)		
	b		C _n H _{2n+1}	1	do not allowC _n H _{2n+} 1
			Equation: $C_6H_{12}O \rightarrow C_6H_{10} + H_2O (1)$ Calculation: FIRST CHECK THE ANSWER ON THE		ignore state symbols allow C ₆ H ₁₁ OH for C ₆ H ₁₂ O
		i			If there is an alternative answer, check to see if there is any ECF credit possible using working below
			ANSWER LINE IF answer = 32.7 (%) award 3 marks		% yield must be to 1 dp
	с		theoretical yield = 7.65 / 100 = 0.0765 (mol) (1)	4	allow theoretical and actual yield calculated in mass
			actual yield = 2.05 / 82 = 0.025 (mol) (1)		theoretical yield = 0.0765 × 82 = 6.273 g
			% yield = (0.025 / 0.0765) × 100% = 32.7(%)		% yield = (2.05 / 6.273) = 32.7(%)
			(1)		allow ecf from calculated actual and theoretical yields
			bromine water is decolourised (1)		allow bromine water turns colourless
		ii	ii Br Br	2	ignore 'goes clear'
			(1)		allow correct structural OR displayed OR skeletal formula OR mixture of the above
			Total	10	